

organized by

LIFE LAGOON REFRESH. Ecological restoration in Venice Lagoon (Italy): concrete actions supported by numerical modeling and stakeholder involvement.

Feola A. (ISPRA), Bonometto A. (ISPRA), Ponis E. (ISPRA), Cacciatore F. (ISPRA), Oselladore F. (ISPRA), Matticchio B. (IPROS), Canesso D. (IPROS), Sponga S. (IPROS), Volpe V. (OOPP), Lizier M. (Veneto Region), Sfriso A. (UNIVE), Ferla M. (ISPRA), Boscolo Brusà R. (ISPRA)

Alessandra Feola

PARTNERSHIP, BUDGET AND DURATION

Coordinator

ISPRA – Italian National Institute for Environmental Protection and Research

Partners

Veneto Region - Environmental Protection Department

Interregional Superintendency for Public Works in Veneto, Trentino Alto Adige, Friuli Venezia Giulia

University Cà Foscari of Venice

IPROS Environmental Engineering s.r.l

Budget info

Total amount:

3'315'130 Euro

Eligible budget: 3'286'630 Euro

% EC Co-funding: 74,13% of total eligible budget

Duration

Start: 01/09/2017

End: 31/08/2022

Location
Venice Lagoon
ITALY

PROJECT BACKGROUND: DIFFERENT NATURAL AND ANTHROPOGENIC PRESSURES

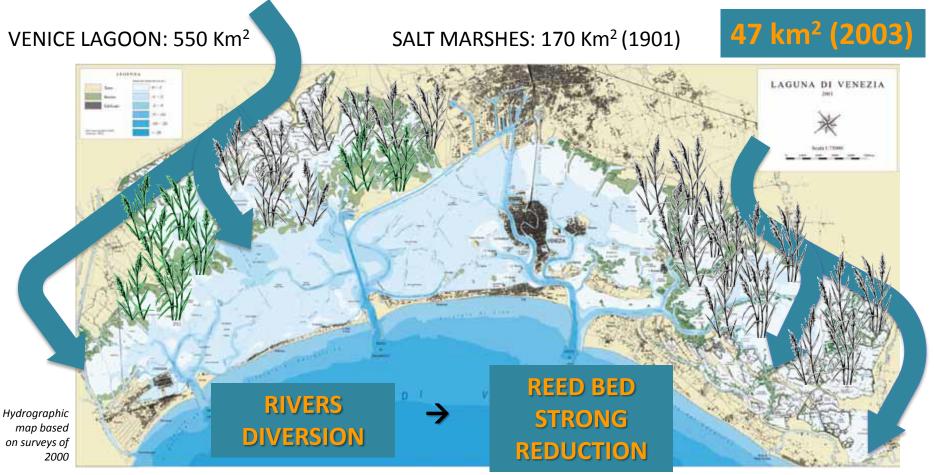
SEVERE REDUCTION OF THE ECOTONAL TRANSITION ZONE BETWEEN LAND AND LAGOON, CHARACTERIZED BY A MARKED SALINE GRADIENT

First modern hydrographic map based on surveys of 1809 and 1811

D'Alpaos, 2010. Morphological evolution of the Venice Lagoon through historical and hydrographic maps

DIFFERENT NATURAL AND ANTHROPOGENIC PRESSURES

Hydrographic map based on surveys of 2000



PROJECT BACKGROUND: RIVERS DIVERSION

PROJECT MAIN OBJECTIVES

RECREATE THE **TYPICAL OLIGO-MESOHALINE** ENVIRONMENTS OF ESTUARINE TYPE

- to improve the **Degree of Conservation of Habitat 1150** * Coastal lagoons in the Northern Lagoon of Venice, SCI IT3250031
- to reduce the **degree of eutrophication**, thanks to reed phytoremediation function;
- to improve the **status of bird species** included in annex I of Dir. 2009/147/EC, that use the reed environment during the winter period and /or for breeding, foraging or nesting;
- to increase the **presence of fish species** attracted by the presence of low-salinity environments;

POLICY IMPLICATIONS

"HABITAT DIRECTIVE" 92/43/CEE / "BIRDS DIRECTIVE" 2009/147/EC

improvement of conservation degree of habitat and species of Community interest

"WATER FRAMEWORK DIRECTIVE" 2000/60/EC

improvement of the trophic state of the habitat 1150* in order to contribute to the **achievement of the good Ecological status** in two water bodies within the Venice lagoon

2020 BIODIVERSITY STRATEGY

restoration of salt gradient and reed bed surfaces in order to contribute to the increase of biodiversity in the project area. Increasing of species included in Habitat and Birds Directives and other bird species of special conservation interest

PROJECT KEY ACTIONS

- ✓ diversion of a **freshwater flow** (1.000 l/s) from the river Sile into the lagoon;
- ✓ restoration of the intertidal morphology to sustain the reed development;
- ✓ planting of *Phragmites australis* and transplantation of *Ruppia cirrhosa* and *Zostera noltei*;
- ✓ establishment of a protected zone of 70 ha in order to manage/reduce hunting and fishing pressure;
- ✓ monitoring of the project impact;
- ✓ stakeholder involvement;
- ✓ actions of dissemination and replication of project's results.

MAIN FOCUSES OF THIS PRESENTATION

- ✓ NUMERICAL MODELS USED A SUPPORTING TOOL FOR HYDRAULIC AND MORPHOLOGICAL INTERVENTIONS
- ✓ STAKEHOLDERS INVOLVEMENT IN CONCRETE ACTIONS AND IN MONITORING ACTIVITIES

NUMERICAL MODELLING AS SUPPORTING TOOL

NUMERICAL MODELLING WAS USED AS A SUPPORTING TOOL:

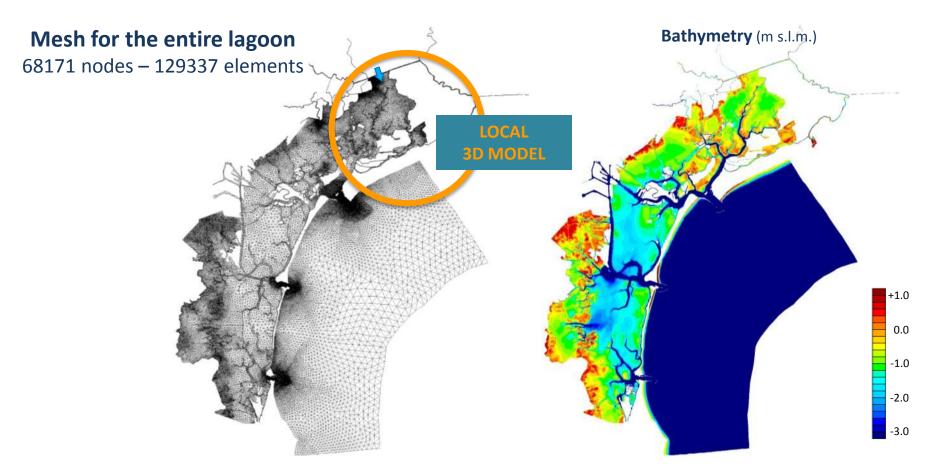
- TO REACH PROJECT GOALS
 - TO DEFINE THE EXTENSION OF THE AREA OF INFLUENCE (1900 ha)
 - TO DEFINE THE MOST SUITABLE PROJECT CONFIGURATION IN TERMS OF SALINITY DIFFUSION AND HYDRAULIC FEFECTS

• TO VERIFY PROJECT POSSIBLE IMPACTS ON SILE RIVER (WATER LEVEL, DISCHARGE, SALINE WEDGE INTRUSION)

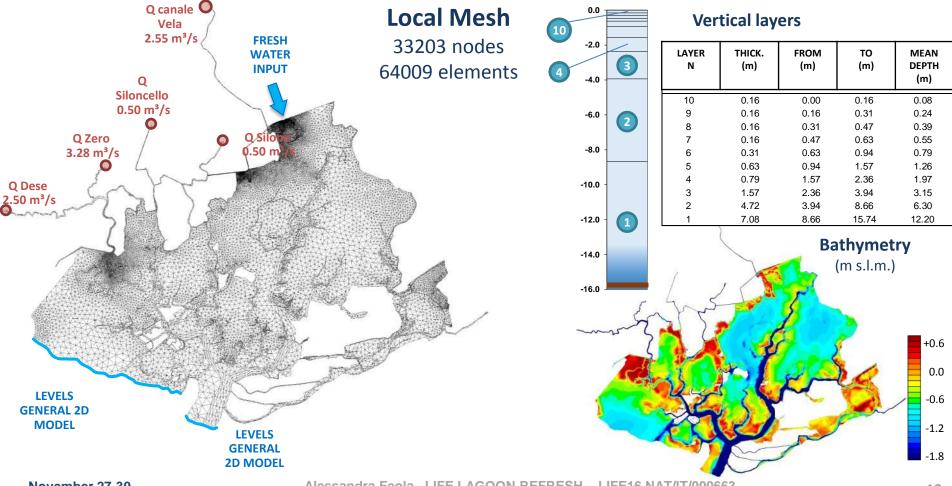
2D- 3D MODEL
OF LAGOON

2D- 3D MODEL
OF RIVER
SYSTEM

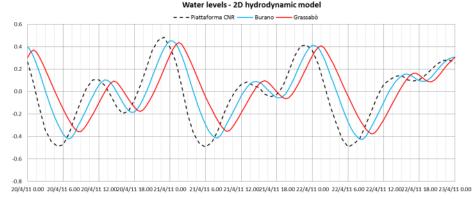
DETAILS OF SETUP, CALIBRATION AND RESULTS WILL BE PRESENTED

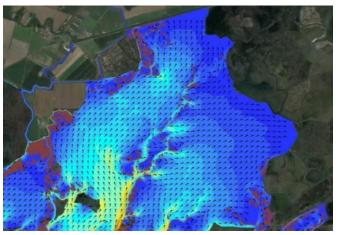


2D HYDRODINAMIC MODEL FOR THE ENTIRE VENICE LAGOON



3D HYDRODINAMIC MODEL - NOTHERN PART OF THE VENICE LAGOON




HYDRODINAMIC MODEL: TYPE OF RESULTS

WATER LEVEL

CURRENT SPEED

SALINITY

HYDRODINAMIC MODEL: CALIBRATION

WATER LEVEL

CURRENT FIEL

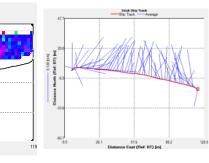
SALINITY

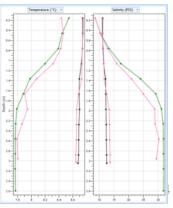
SPEED

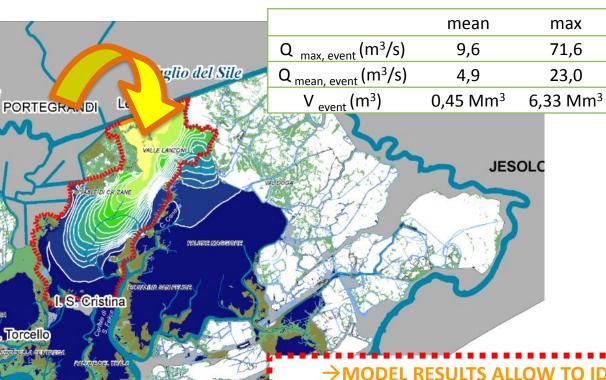
TIDE LEVEL STATIONS

ADCP FIELD CAMPAIGNS

CTD FIELD CAMPAIGNS -FIXED STATIONS







NUMERICAL MODEL USED TO DEFINE THE EXTENSION OF THE AREA OF INFLUENCE

CURRENTLY, DURING FLOOD EVENTS, WATER SPILLS FROM SILE RIVER INTO THE LAGOON, WITHOUT BUFFER ZONE ABLE TO REDUCE NUTRIENT LOADS

THE PROJECT WILL INCREASE THE
ENVIRONMENTAL
SUSTAINABILITY OF EXISTING
FLOOD PROTECTION
INFRASTRUCTURES (SPILLWAY,
FLOODS DIRECTIVE 2007/60/CE).

IN PARTICULAR, RESTORATION
OF MORPHOLOGY AND REED
BEDS WILL INCREASE THE SELFPURIFYING CAPACITY, REDUCING
THE RISK OF EUTROPHICATION.

→ MODEL RESULTS ALLOW TO IDENTIFY THE AREA OF POSITIVE INFLUENCE OF THE PROJECT

CONCRETE ACTIONS SUPPORTED BY NUMERICAL MODELLING

DIVERSION OF A FRESHWATER FLOW FROM THE SILE RIVER INTO THE LAGOON

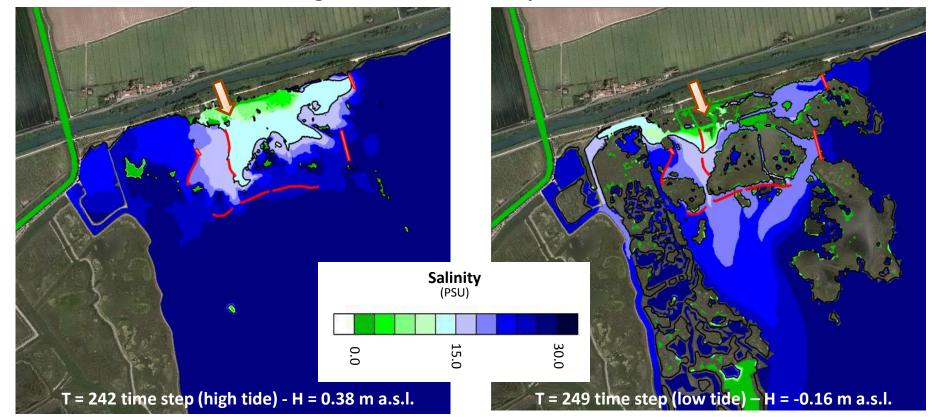
HYDRAULIC WORK

WHICH DISCHARGE?

STRUCTURES PROPERLY
ARRANGED IN ORDER TO
SLOW DOWN THE FRESH
WATER DISPERSION AND TO
FAVOR THE REED
DEVELOPMENT ACCORDING
TO THE PROJECT
CONFIGURATION

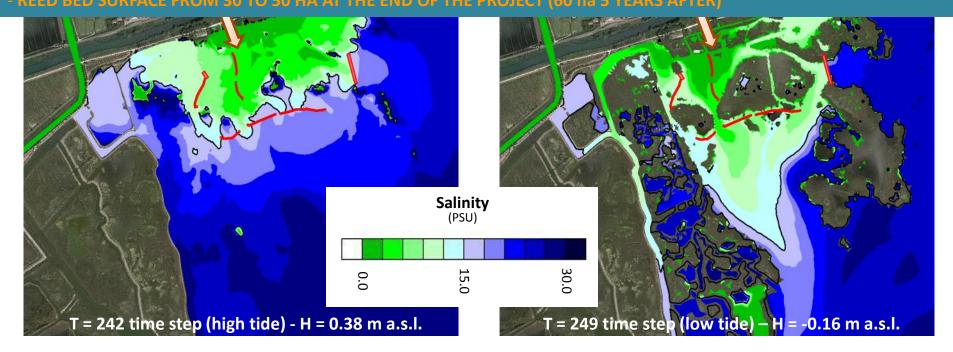
MORPHOLOGIC WORK

WHICH CONFIGURATION?



NUMERICAL MODEL USED TO EVALUATE DISCHARGE VARIATION IN TERMS OF SALINITY DIFFUSION

Configuration: BIO 1° step - Q = 300 I/s

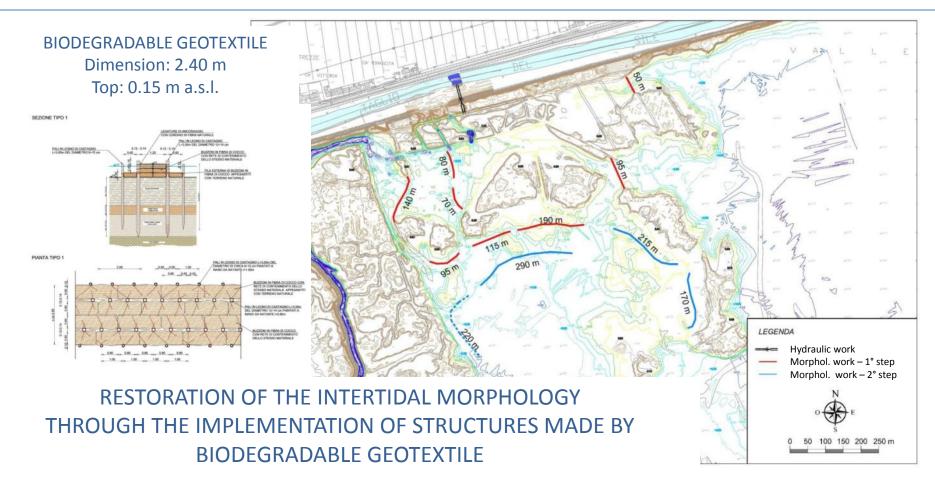


NUMERICAL MODEL USED TO EVALUATE DISCHARGE VARIATION IN TERMS OF SALINITY DIFFUSION

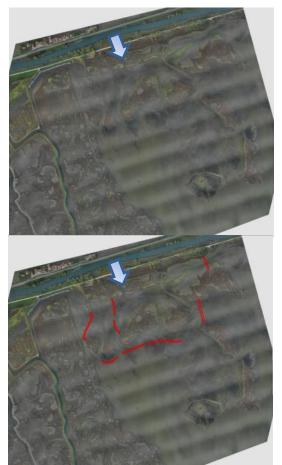
Configuration: BIO 1° step – Q = 1000 I/s

EXPECTED RESULTS:

WATER SALINITY: FROM >30 (ANNUAL MEAN) TO <5 PSU (5 ha); <15PSU (25 ha); <25PSU (70 ha);
 REED BED SURFACE FROM 30 TO 50 HA AT THE END OF THE PROJECT (60 ha 5 YEARS AFTER)



MORPHOLOGIC WORK



MORPHOLOGIC WORK - PROJECT SETUP - DIFFERENT CONFIGURATIONS

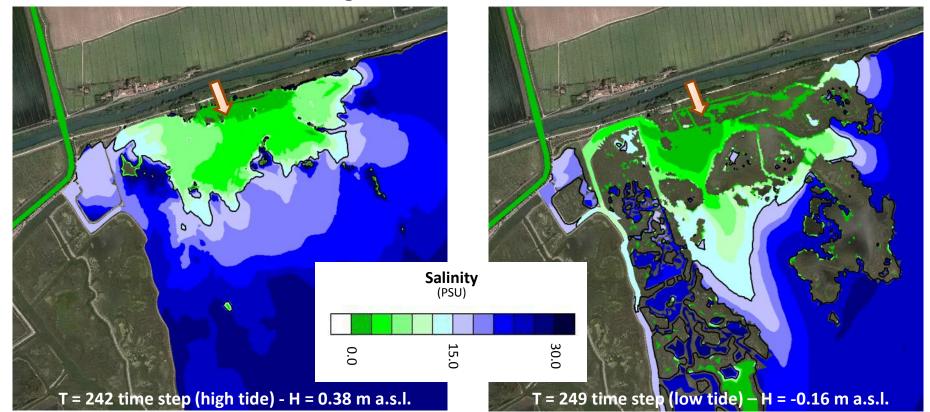
Configuration ZERO

Configuration C2 Top elevation: +0.1 m a.s.l.

> Configuration BIO 2° step Top elevation: +0.1 m a.s.l.

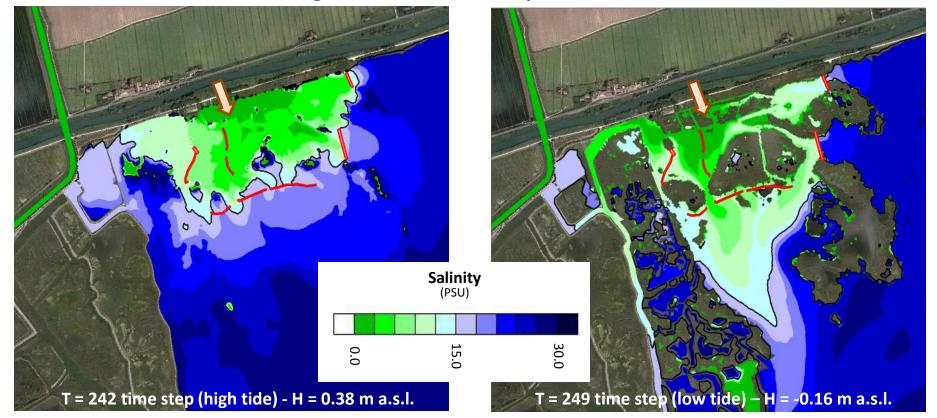
Configuration BIO 1° step Top elevation: +0.1 m a.s.l.

November 27-30

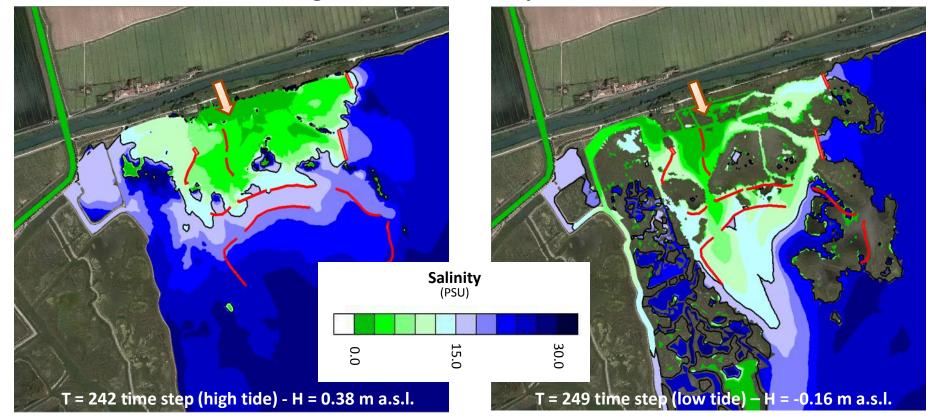


Configuration: ZERO - Q = 1000 I/s

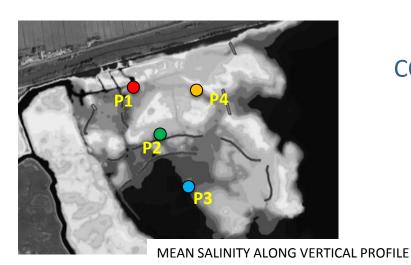
Configuration: C2 - Q = 1000 l/s

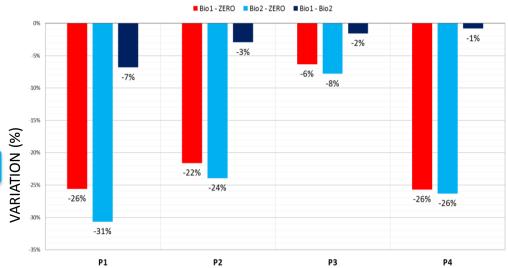


Configuration: BIO 1° step -Q = 1000 I/s



Configuration: BIO 2° step -Q = 1000 I/s





FRESH WATER DIFFUSION COMPARISON BETWEEN DIFFERENT PROJECT CONFIGURATIONS

SURFACE SALINITY - DAILY MEAN VALUES CONFIG ZERO VS CONFIG BIO2

P1 P2 *P*3 **P4 ZERO** 1.8 8.6 16.6 23.2 Bio1 1.3 13.0 21.8 6.4 Bio2 1.2 12.6 21.4 6.3 delta % Bio1-ZERO -26% -22% -6% -26% delta % Bio2-ZERO -31% -24% -8% -26% -7% -2% -1% delta % Bio2-Bio1 -3%

NUMERICAL MODEL USED TO VERIFY PROJECT POSSIBLE IMPACTS ON SILE RIVER

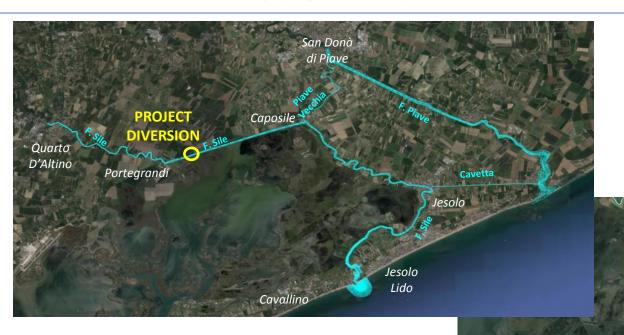
DRINKING WATER USE

IRRIGATION

SOCIO-ECONOMIC

AND ENVIRONMENTAL CONCERN

OF DIFFERENT STAKEHOLDERS



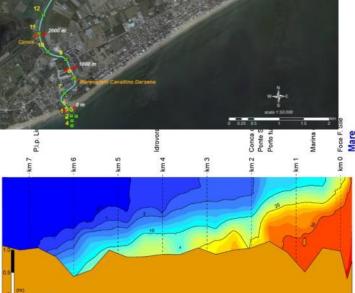
SALINE WEDGE INTRUSION ON SILE RIVER - NUMERICAL MODELLING - SETUP

2D MODEL OF RIVER SYSTEM Sile-Piave-Piave Vecchia-Cavetta

WATER LEVEL
DISCHARGE
SALINE WEDGE INTRUSION

3D MODEL OF RIVER MOUTH

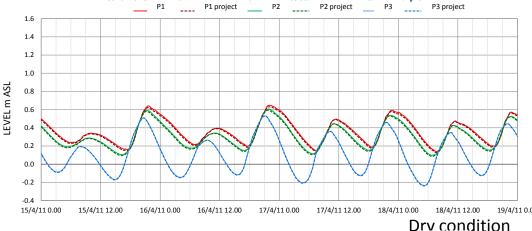


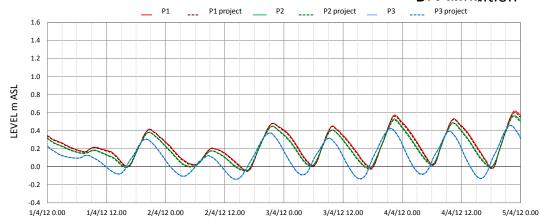

SALINE WEDGE INTRUSION ON SILE RIVER - NUMERICAL MODELLING - FIELD CAMPAIGNS

3D MODEL + FIELD CAMPAIGN (15/02/2018)

3D MODEL - EBB TIDE 15/2/2018

Normal condition


SALINE WEDGE INTRUSION ON SILE RIVER - NUMERICAL MODELLING - PROJECT EFFECTS EVALUATION


WATER **LEVEL AND DISCHARGE VARIATIONS**

TEVEL M ASL

	section	Dry	Normal	Flood
Level mean differences (m)	P1	0.007	0.010	0.019
	P2	0.006	0.009	0.017
	Р3	0.003	0.004	0.006
Discharge mean differences (m³s-1)	P1	0.8	1.0	1.6
	P2	0.8	1.0	1.5
	Р3	0.6	0.7	1.0

STAKEHOLDERS INVOLVEMENT – FISHERMEN AND HUNTERS - 1

FISHERMEN AND HUNTERS, WHO WHO?

REGULARLY FREQUENT THE SCI

IT3250031

THEY WILL BE INVOLVED IN THE

HOW? **REED AND SEAGRASS TRANSPLANT**

ACTIONS AFTER A TRAINING COURSE

TO GET INVOLVEMENT AND RAISE WHY?

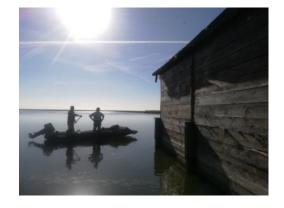
AWARENESS ON THE CONSERVATION

AND RESTORATION OF HABITATS

AND SPECIES

WHAT ✓ CONCRETE ACTIONS

✓ PARTECIPATION WE GET?


STAKEHOLDERS INVOLVEMENT – FISHERMEN AND HUNTERS - 2

WHO?

FISHERMEN AND HUNTERS, WHO REGULARLY FREQUENT THE SCI IT3250031

HOW?

THEY WILL BE INVOLVED IN THE MONITORING ACTIVITY

WHY?

TO EVALUATE THE PROJECT IMPACT IN TERM OF CULTURAL (TRADITIONAL FISH ACTIVITY AND HUNTING) AND PROVISIONING (FISH PRODUCT) ECOSYSTEM SERVICES

WHAT
WE GET?

✓ LESS SCIENTIFIC DATA BUT LARGE SCALE AND HIGER FREQUENCY IN DATA COLLECTION

✓ STAKEHOLDER POINT OF VIEW

STAKEHOLDERS INVOLVEMENT – GENERIC PUBLIC - 1

WHO? PUBBLIC WITH SOME INTEREST

ON AVIFAUNA

HOW? TRAINING COURSE ON BIRDS SPECIES

RECOGNITION AND PHOTOGRAFY

HUNTING

WHY?

TO INCREASE KNOWLEDGE OF ENVIRONMENT AND FOR INVOLVEMENT AND SHARING OF PROJECT OBJECTIVES AND RESULTS

STAKEHOLDERS INVOLVEMENT – GENERIC PUBLIC - 2

WHO? GENERIC PUBBLIC

HOW? DISSEMINATION WITH PUBBLIC EVENT, LABORATORIES, ETC.

WHY?

INVOLVEMENT AND SHARING OF PROJECT OBJECTIVES AND RESULTS

CONCLUSIONS

- LIFE "LAGOON REFRESH" PROJECT AIMS TO RECREATE THE TYPICAL OLIGO-MESOHALINE ENVIRONMENT OF ESTUARINE TYPE AND TO ACHIEVE RELATED ENVIRONMENTAL BENEFICIAL EFFECTS
- **NUMERICAL MODELS WERE IMPLEMENTED AND USED**, IN DIFFERENT STAGES OF PROJECT PLANNING, **AS SUPPORTING TOOL TO**
 - → REACH PROJECT GOALS
 - → VERIFY POSSIBLE IMPACTS
- STAKEHOLDERS WILL BE INVOLVED IN CONCRETE ACTIONS AND IN MONITORING ACTIVITIES
- STAKEHOLDERS WILL BE INVOLVED IN DISSEMINATION ACTIONS

CONTACTS

ISPRA - Italian National Institute for Environmental Protection and Research

Email: lagoonrefresh@isprambiente.it

Speaker

Alessandra Feola Tel: 06.50074986

Project Leader

Rossella Boscolo Brusà

Tel.: 06.50074985

Project Manager

Andrea Bonometto

Tel.: 06.50074982

Life Lagoon Refresh

lifelagoonrefresh

@LagoonRefresh

www.researchgate.net/project/ Life-LAGOON-REFRESH

www.lifelagoonrefresh.eu